Status message

Dear LOR user,

Thank you for being a big part of this community. To better support the initiatives around open educational resources in the state of Michigan, all resources on the Michigan Virtual Learning Object Repository (LOR) are being moved to #GoOpen Michigan on September 30th, 2018. During the transition, our LOR will be moved to an archived state, not allowing new user registration or new content to be added. An email with more details was sent to registered users of the LOR in September. To make use of the great resources on the platform, we encourage you to create an account and add your own new resources to the #GoOpen Michigan platform.

Standards: Math

CCSS.MATH.CONTENT.K.MD.1 (0)
Describe and compare measurable attributes.
Education Level: K
Description:

Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object.

CCSS.MATH.CONTENT.K.MD.2 (0)
Describe and compare measurable attributes.
Education Level: K
Description:

Directly compare two objects with a measurable attribute in common, to see which object has “more of”/“less of” the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/shorter.

CCSS.MATH.CONTENT.K.MD.3 (0)
Classify objects and count the number of objects in each category.
Education Level: K
Description:

Classify objects into given categories; count the numbers of objects in each category and sort the categories by count. (Limit category counts to be less than or equal to 10.)

CCSS.MATH.CONTENT.K.NBT.1 (0)
Work with numbers 11-19 to gain foundations for place value.
Education Level: K
Description:

Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (such as 18 = 10 + 8); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.

CCSS.MATH.CONTENT.K.OA.1 (2)
Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.
Education Level: K
Description:

Represent addition and subtraction with objects, fingers, mental images, drawings (drawings need not show details, but should show the mathematics in the problem), sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.

CCSS.MATH.CONTENT.K.OA.2 (2)
Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.
Education Level: K
Description:

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.

CCSS.MATH.CONTENT.K.OA.3 (1)
Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.
Education Level: K
Description:

Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., 5 = 2 + 3 and 5 = 4 + 1).

CCSS.MATH.CONTENT.K.OA.4 (1)
Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.
Education Level: K
Description:

For any number from 1 to 9, find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation.

CCSS.MATH.CONTENT.K.OA.5 (1)
Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.
Education Level: K
Description:

Fluently add and subtract within 5.

CCSS.MATH.PRACTICE.MP1 (3)
Make sense of problems and persevere in solving them.
Education Level: K-12
Description:

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, “Does this make sense?” They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

CCSS.MATH.PRACTICE.MP2 (2)
Reason abstractly and quantitatively.
Education Level: K-12
Description:

Mathematically proficient students make sense of the quantities and their relationships in problem situations. Students bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

CCSS.MATH.PRACTICE.MP3 (0)
Construct viable arguments and critique the reasoning of others.
Education Level: K-12
Description:

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

CCSS.MATH.PRACTICE.MP4 (1)
Model with mathematics.
Education Level: K-12
Description:

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

CCSS.MATH.PRACTICE.MP5 (1)
Use appropriate tools strategically.
Education Level: K-12
Description:

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

CCSS.MATH.PRACTICE.MP6 (1)
Attend to precision.
Education Level: K-12
Description:

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

Pages